بحث عن الأعداد المركبة

بحث عن الأعداد المركبة

تعتبر دراسة الأعداد المركبة والأعداد المركبة مهمة جدًا في حياتنا اليومية ؛ وذلك لأنها تساعد بشكل كبير في حل العمليات الحسابية المعقدة.

من خلال “إضافة” أهم المعلومات حول صيغ الجمع ، سوف نوضح من خلال البحث عن صيغ الجمع.

»يرجى قراءة المزيد من المعلومات: ما هو العدد الأولي؟

بحث بصيغة الجمع

سنشرح في هذه المقالة أهم نقاط الأعداد المركبة ، مثل تعريفها ، والتمثيل الرسومي للأعداد المركبة ، وأهمية وخصائص الأعداد المركبة.

تعريف الجمع

الرقم المركب هو الرقم p ، والذي يمكن كتابته كـ p = a + bc ، لذا فإن a و b عددان حقيقيان ، أو جذور c = -1.

(أ) يسمى الجزء الحقيقي من العدد المركب ، (ب) يسمى الجزء التخيلي من العدد المركب.

يمكن تعريف مجموعة الأعداد المركبة k بالصيغة التالية: k = {p: p = a + bt حيث a و b ينتميان إلى h ، و v = root-1}.

شخصية معقدة

يتم كتابة أي رقم مركب بطريقة واحدة ، أي A + BC ، لذلك يتم تحديد الرقم من خلال الزوج المرتب من الأعداد الحقيقية (أ ، ب).

يمكننا تمثيل ؛ من خلال نقطة ذات إحداثيات (أ ، ب) في المستوى الديكارتي أو متجه قياسي ، والذي يبدأ من الأصل وينتهي عند نقطة الإحداثيات (أ ، ب).

نتيجة هذا التمثيل الرسومي هو أن مستوى الإحداثيات (الديكارتية) يسمى المستوى المركب أو مستوى أرجاند. إسناد وتكريم للعالم الفرنسي أرغيند.

ثم يسمى المحور التخيلي المحور الرئيسي ، ويسمى المحور الأفقي المحور الحقيقي.

أهمية الجمع

توفر الأعداد المركبة نظامًا حتى نجد حلًا لمعادلة رياضية ، وقد لا يكون لها حل في مجموعة الأعداد الحقيقية ، ويمكن تمثيل ذلك بمثال: 2 = -9 (ج +1).

لذلك نجد أن الأعداد المركبة تستخدم في العديد من التطبيقات وتستمر في استخدامها في حياتنا اليومية.

بالإضافة إلى صيغ الجمع ، تشمل أهم الاستخدامات ما يلي:

  1. أنها تنطوي على الهندسة الكهربائية.
  2. بالإضافة إلى حساب قيمة الجهد ، وقياس تردد التيار.
  3. كما أنها تختلف عن دائرة التيار المستمر.
  4. بالإضافة إلى ذلك ، تُستخدم الأرقام المركبة لتمثيل حركات متعددة الأبعاد ومتغيرة الحجم لحساب القيم المختلفة في دوائر التيار المتناوب.

هذه هي استخدامات الأعداد المركبة في مجال الرياضيات ، لكن استخداماتها لا تقتصر على مجال الرياضيات.

على العكس من ذلك ، فهي تستخدم في مجال الاتصالات الهاتفية واللاسلكية ، وتلعب دورًا فاعلًا فيها. هذا لأنها مفيدة في معالجة الإشارات.

واستخدامات أخرى متنوعة ؛ وذلك لأن الأعداد المركبة تعطي العديد من الحلول للمعادلات المختلفة التي لا تقبل أي موقف ، وخاصة المعادلات في المصفوفات الحقيقية.

»نوصي أيضًا بقراءة: مصفوفة البحث الرياضي الكاملة

طبيعة الجمع

  • جميع الأعداد المركبة لها رقم مترافق ، لذا فإن اقتران العدد المركب هو أيضًا رقم مركب. وهو نفس الجزء الحقيقي من الرقم الأصلي. والفرق هو أن الجزء التخيلي للعدد المركب قد يكون مختلفًا عن الجزء التخيلي الأصلي. القيمة.

على سبيل المثال: / 3 + x = 2 i الرقم الأصلي X / = 2-3 أنا الرقم المصاحب.

  • من خلال الأعداد المركبة (مثل الجمع والطرح) وعمليات الضرب والقسمة ، يمكن تطبيق العديد من العمليات الحسابية ، ويمكننا أيضًا إيجاد مقلوب كل رقم مركب.
  • يمكن كتابة الأعداد المركبة في صيغ متعددة ، ويمكننا كتابة الأعداد المركبة في شكل ثنائي أو أسي.

عدد العمليات المعقدة

الآن سوف نشرح العمليات الحسابية الأساسية ومعادلات الأعداد المركبة على النحو التالي:

  • إنها تساوي رقمين

يمكن أن يتساوى رقمان مركبان ، على سبيل المثال: p 1 = a + bc و p 2 = c + dt (إذا كانت a = c و b = d).

  • اضف إليه

يتم إضافة مجموعة الأرقام المركبة بإضافة رقمين مركبين v 1 = a + bt و p 2 = c + dt من خلال العلاقة التالية: (a + c) + (b + d) t.

إضافة الأعداد المركبة هي عملية مغلقة ، مضافة وتبديل ، لها صيغ الجمع والمكونات المحايدة.

  • عملية الطرح

تشبه عملية طرح الأعداد المركبة الجمع ، لكن بعلامة الطرح بدلاً من علامة الجمع.

على سبيل المثال ، اطرح رقمين p1 = a + bt و p2 = c + dt من هذه العلاقة (ac) + (bd) t.

  • عملية الانقسام

عملية القسمة على النحو التالي: بضرب البسط والمقام في الرقم المرافق للمقام ، والقسمة بين رقمين مركبين ، بحيث يصبح المقام رقمًا حقيقيًا.

مثال: إذا كان p 1 = x 1 + y 1 t ، و p 2 = x 2 + y 2 t ، حيث p لا يساوي الصفر ، إذن v 1 و z 2 = (y1t / x2 + p2t) X (S2- عشر T / S2- 2nd T).

  • عمليه الضرب

نضرب العددين المركبين v 1 = a + bc و v 2 = c + dt بالعلاقة التالية: (a cb d) + (ad + bc) c.

إن عملية ضرب الأعداد المركبة هي عملية تبادلية ومغلقة وإضافة لها صيغة الجمع ومكون محايد.

في ملخص موضوع البحث الجماعي ، قمنا بجمع أهم المعلومات حول الموضوع من أجلك ، ونأمل أن ترضيك.

مقالات ذات صلة

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

زر الذهاب إلى الأعلى
إغلاق